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A predictive theory is presented which is capable of providing quantitative results for the heat transfer
coefficients in round pipes for the three possible flow regimes: laminar, transitional, and turbulent.
The theory is based on a model of laminar-to-turbulent transition which is also viable for purely laminar
and purely turbulent flow. Fully developed heat transfer coefficients were predicted for the three
regimes. The present predictions were brought together with the most accurate experimental data
known to the authors as well as with several algebraic formulas which are purported to be able to provide
fully developed heat transfer coefficients in the so-called transition regime between Re = 2300 and
10,000. It was found that over the range Re > 4800, both the present predictions and those of the Gnielin-
ski formula [V. Gnielinski, New equations for heat and mass transfer in turbulent pipe and channel flow,
Int. Chem. Eng. 16 (1976) 359–367] are very well supported by the experimental data. However, the Gni-
elinski model is less successful in the range from 2300 to 3100. In that range, the present predictions and
those of Churchill [S. Churchill, Comprehensive correlating equations for heat, mass, and momentum
transfer in fully developed flow in smooth tubes, Ind. Eng. Chem. Fundam. 16 (1977) 109–116] are mutu-
ally reinforcing. Heat transfer results in the development region have also been obtained. Typically,
regardless of the Reynolds number, the region immediately downstream of the inlet is characterized
by laminar heat transfer. After the breakdown of laminar flow, a region characterized by intermittent
heat transfer occurs. Subsequently, the flow may become turbulent and fully developed or the intermit-
tent state may persist as a fully developed regime. The investigation covered both of the basic thermal
boundary conditions of uniform heat flux (UHF) and uniform wall temperature (UWT). In the develop-
ment region, the difference between the respective heat transfer coefficients for the two cases was
approximately 25% (UHF > UWT). For the fully developed case, the respective heat transfer coefficients
are essentially equal in the turbulent regime but differ by about 25% in the intermittent regime. The
reported results are for a turbulence intensity of 5% and flat velocity and temperature profiles at the inlet.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

A large number of heat exchangers operate in the so-called
transition regime between laminar and turbulent flow. The need
for information for the proper design of these devices has moti-
vated several attempts to create algebraic relationships for the pre-
diction of heat transfer coefficients at Reynolds numbers that lie in
the range from 2300 to 10,000. All such predictive equations are
based either on interpolations or curve fits to experimental data.
Accurate experimental data in this range of Reynolds numbers
are difficult to obtain, especially for gas flows where external heat
losses may be as large as the heat flows to the fluid itself. This is
because the heat transfer coefficients for the flowing gas are very
ll rights reserved.
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small, so that the internal thermal resistance is appreciable com-
pared to the external resistance. Furthermore, all the data used
to develop the existing algebraic predictions are mean values
rather than the fully developed values that are properly required
for the development of the available algebraic predictions.

The main contributions to the literature for the algebraic pre-
diction of heat transfer coefficients in the so-called transition re-
gime are due to Kuznetsov and Leonencke [1] (as reported in
[2]), Petersen and Christiansen [2], Gnielinski [3], Churchill [4],
and Gnielinski [5]. The first two of these papers fitted an algebraic
curve to experimental data for Prandtl numbers greater than two,
but present an equation in which the Prandtl number is a freely
prescribable parameter. In 1976, Gnielinski [3] modified the widely
accepted Petukhov–Popov equation [6] which provides fully devel-
oped heat transfer coefficients for flows with Reynolds numbers
exceeding 10,000. The thus-modified equation, which is purported
to be applicable to Reynolds numbers as low as 2300, is compared
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Nomenclature

a transitional model constant
A transitional model constant
cp specific heat
D pipe diameter
E model destruction terms
h heat transfer coefficient
F1, F2 blending functions in SST model
k thermal conductivity
Nu Nusselt number
p pressure
P model production term
Pr Prandtl number
q heat flux
R pipe radius
Re Reynolds number based on pipe diameter
S absolute value of the shear strain rate
T temperature
ui local velocity
U average velocity
xi tensor coordinate direction

Greek symbols
a thermal diffusivity
b1, b2 SST model constants

x specific rate of turbulence dissipation
l dynamic viscosity
j turbulent kinetic energy
P intermittency adjunct function
m kinematic viscosity
r Prandtl-like diffusivities
c intermittency
q density
H dimensionless temperature

Subscripts
bulk fluid bulk quantity
eff effective property
i, j tensor notations
fd fully developed
inlet at pipe inlet
turb turbulent
UHF uniform heat flux
UWT uniform wall temperature
wall at the pipe wall
c intermittency
x specific rate of turbulence dissipation
P intermittency adjunct function
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in [3] to an assemblage of experimental data taken over a multi-
decade period and for a variety of operating conditions and fluids.
It should be noted that the vast majority of the data were mean val-
ues of the heat transfer coefficient rather than fully developed val-
ues, reflecting the early era in internal convection investigations.
The comparison of the Gnielinski equation with the data indicated
a considerable amount of scatter, at least ±20%. This considerable
scatter is likely due to the antiquity of the data and the absence
of modern instrumentation.

The approach employed by Churchill [4] was to develop an
interpolation formula for the Nusselt number between the limiting
cases of laminar and fully turbulent flow. As with the other pres-
ently available algebraic predictive models, the Churchill contribu-
tion was based on available mean heat transfer information. More
recently, Gnielinski [5] has provided an alternative approach to the
prediction of heat transfer coefficients in the transition region
based on a linear interpolation of the intermittency between the
values of 0 and 1 between Re = 2300 and 10,000.

2. Numerical model

2.1. Conservation equations

The numerical model is built upon several sets of equations
which describe the physical phenomena that underlie laminar,
transitional, and turbulent flows. The first set of governing equa-
tions are the well-known Reynolds-averaged conservation equa-
tions for mass, momentum, and energy, which are written in
tensor form as
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These equations will be applied to all three flow regimes by making
use of two sets of supplementary equations.

In Eq. (2), the quantity lturb is readily identified as the turbulent
viscosity. In the energy equation, Eq. (3), the effective thermal con-
ductivity keff represents contributions from the molecular conduc-
tivity k and the turbulent thermal conductivity kturb. The turbulent
thermal conductivity is quantified by means of the turbulent Pra-
ndtl number, which is defined as

Prturb ¼
cplturb

kturb
ð4Þ

With this definition, the effective thermal conductivity is rewritten
as

keff ¼ kþ kturb ¼
k

qcp

� �
qcp þ

cplturb

Prturb
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qcp
þ mturb

Prturb

� �
qcp ð5Þ

The first term in the parenthesis of the rightmost member of Eq. (5)
is the molecular thermal diffusivity, a. The combination of Eqs. (4)
and (5) yields the operating equation for thermal energy transport
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In this equation, H is a dimensionless temperature whose definition
depends on the thermal situation being considered. For the case of
prescribed surface temperature at a value Twall and an inlet fluid
temperature Tinlet, the definition of H is

H � T � T inlet

Twall � T inlet
ð7Þ

Alternatively, for uniform heat flux q at the bounding wall, the def-
inition is

H � T � T inlet

ðqR=kÞ ð8Þ

Aside from the fluid properties q, l, and a, which can be regarded as
known, Eqs. (2) and (6) contain the special unknowns lturb and
Prturb. The methods used to determine these quantities will be de-
tailed in the following sections.
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2.2. SST model for kinetic energy and specific dissipation rate

The turbulent flow will be determined using the SST model of
Menter [7] which is conveyed in Eqs. (9) and (10). There, x is
the specific rate of turbulence dissipation, Pj is the rate of produc-
tion of the turbulent kinetic energy j, and the terms rj, rx, and
rx2 are Prandtl number-like parameters for the transport j and
x. Furthermore, F1 is a blending function that facilitates the com-
bination of the standard j–e model and the Wilcox j–x model
[8,9]. The term S is the absolute value of the shear strain rate,
and the b terms are model constants.

The factor c, which multiplies the production term Pj in Eq. (9)
is worthy of special note. In the standard SST model, c does not ap-
pear. Its role in Eq. (9) is to diminish the rate of turbulence produc-
tion in flows that are not fully turbulent. The values of c range
between 0 and 1.
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The solution of Eqs. (9) and (10) yields the values of j and x, which
are then used to evaluate the turbulent viscosity lturb from

lturb ¼
aqj

maxðax; SF2Þ
ð11Þ

in which F2 is a function that limits the values of the turbulent vis-
cosity in the near-wall region, a is a constant, and S has already been
defined in connection with Eq. (10). Further details of the SST model
can be found in [7].

2.3. Transition model

A transition model is needed to adapt the SST turbulence model
to non-fully turbulent flows. This adaptation is achieved via the
damping factor c which appears in Eq. (9). As used here, c is called
the intermittency. It is not the same as the intermittency encoun-
tered in the prior literature. That intermittency was used to indi-
cate the fraction of time that the flow at a specific location is
turbulent.

Recent developments of a viable transition model may be traced
to the work of Suzen and Menter. In a series of papers, Suzen and
co-workers presented a one-equation model for the intermittency
as a supplement of the shear stress transport (SST) turbulence
model [10–13]. That intermittency factor was used as a multiplier
of the SST-defined eddy viscosity. Although this approach was
capable of yielding useful results, its structure was ill-suited for
modern, multi-processor computational schemes. The difficulty is
that it requires integrated boundary layer parameters for its imple-
mentation rather than local parameters. The capture of these
integrated parameters cannot easily be performed in a parallel-
processor environment.

The most current and readily implemented scheme for predict-
ing transition and skin friction in external flows is that formulated
by Menter and co-workers [14–16]. They devised a scheme in
which two supplementary equations, one for the intermittency c
and the other for intermittency adjunct function P, were employed
in conjunction with the SST turbulence model. Two of the essential
features of the Menter scheme are: (a) the intermittency controls
(i.e., dampens) the rate of production of turbulence and (b) only lo-
cal quantities appear in the formulation. It is relevant to note that
the Menter intermittency factor differs from that of Suzen in that
the latter used the intermittency as a multiplicative modifier
of the eddy viscosity. Furthermore, the fact that only local quanti-
ties are used enables the Menter approach to be implemented on
multi-processor computers. As with all eddy viscosity-based mod-
els, adjustable constants appear both in the constitutive equations
as well as multipliers in the turbulence production and destruction
terms. In the Menter model, the constants were determined by
comparisons with experimental data for external flows.

The Menter model for external flows was recently adapted to
internal flows in [17]. That adaptation was used to study the fluid
flow characteristics of laminar, transitional/intermittent, and tur-
bulent flows in round pipes. Here, the model of [17] is adapted
to the heat transfer problem for the two basic thermal boundary
conditions of uniform heat flux and uniform wall temperature.

To continue the analysis, an equation is needed for the determi-
nation of c as it appears in Eq. (9). However, c is dependent not
only on the already-identified variables that are present in the pre-
ceding equations but also on a new variable P which describes the
local stability status of the flow in the near-wall region. The work-
ing equations for the intermittency and the intermittency adjunct
function P are
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The P quantities denote production of the respective dependent
variables, and the E terms refer to destruction processes. Eqs. (1),
(2), (6), (9), (10), (12), and (13) collectively constitute a coupled sys-
tem of partial differential equations which yields velocities, pres-
sure, temperature, turbulent kinetic energy, specific turbulent
dissipation, and, in particular, the local state of transition conveyed
by c and P.

2.4. Turbulent Prandtl number

The second special parameter that was identified in connection
with Eq. (6) is the turbulent Prandtl number Prturb. Owing to its
critical importance for the prediction of turbulent heat transfer,
there exists an extensive literature describing various attempts
to identify its magnitude. Perhaps the most definitive source of
information about the turbulent Prandtl number is a review paper
by Kays [18]. Among other issues, the paper indicates that values of
the turbulent Prandtl number in the near-neighborhood of a wall
can substantially exceed the traditional value of 0.9. In this regard,
Crimaldi et al. [19] measured values of the turbulent Prandtl num-
ber as high as 10 for water flow. These reports of relatively high
values of Prturb are reinforced by Bensayah et al. [20] and by Chua
et al. [21] for heat transfer in jets. In atmospheric boundary layers,
it was found by Grachev et al. [22] and by Bass et al. [23] that tur-
bulent Prandtl numbers strongly depend on variations of the Rich-
ardson number and can reach values in excess of 40. Heat transfer
measurements in a ribbed channel provided values of the turbu-
lent Prandtl number of approximately 1.7 in a gas flow [24]. In this
light, the information that was cited in the foregoing suggests the
need to rethink the standard default treatment of the turbulent
Prandtl number which is typically a value of 0.9.

In the present investigation, the choice of the values of the tur-
bulent Prandtl number was made by comparing predictions of the
fully developed Nusselt number with literature standards. The



Fig. 2. Turbulent Prandtl numbers used in the present analysis for both UHF and
UWT cases as a function of the Reynolds number.
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fully developed heat transfer coefficient hfd and Nusselt number
Nufd are defined as

Nufd ¼
hfdD

k
; hfd ¼

q
ðTwall � TbulkÞ

����
fd

ð14Þ

To begin the aforementioned comparison, attention may be drawn
to Fig. 1. That figure consists of two parts. The main part of the fig-
ure displays a large amount of truly fully developed experimental
data for air flows in uniformly heated pipes [25–29], while the inset
shows two popular algebraic correlations in the so-called transition
regime. For the range of Reynolds numbers between 4800 and
40,000, the experimental data served as the standard of comparison
to enable the turbulent Prandtl number to be chosen so that the
predicted Nufd values are congruent with the data. The faired curve
that appears in the main part of the figure is to provide continuity
for the data.

Consideration of the most popular among the available alge-
braic correlations in the transition regime suggests some degree
of insufficiency for both. The Gnielinski correlation [3] does not
merge with the laminar results in a manner that would reinforce
its acceptance for the lower Reynolds-number portion of the tran-
sition regime. On the other hand, while the Churchill correlation
smoothly merges with the laminar regime, it clearly overestimates
the experimental data at Re = 4800. Furthermore, its undulating
behavior is inconsistent with rational expectations.

For the range of Reynolds numbers between 2300 and 4800, the
turbulent Prandtl number determination was based on the Gnielin-
ski [3] curve between the crossing-point Reynolds number of 3100
and 4800 and on the Churchill curve [4] for Reynolds numbers below
3100.

The values of the turbulent Prandtl numbers that resulted from
the foregoing procedure are displayed in Fig. 2 where they are plot-
ted as a function of the Reynolds number. There is a sharp peak
whose onset is at Re � 2300 and which attains its maximum at
about 2500. Thereafter, the values of the turbulent Prandtl number
decrease, sharply at first, and then more gradually before achieving
a constant value of 1.05. At the peak, Prturb equals 1.5. The Reynolds
number range where the highest values of Prturb occur is unique in
that very little prior investigation of its turbulence characteristics
has been carried out. It is, clearly, a range in which the turbulence
has a very different nature from that of a fully turbulent flow, so
that information for the latter is likely to have little relevance for
the former. From the foregoing literature survey, it was demon-
strated that for situations that differ from those encountered in a
Fig. 1. Available fully developed experimental Nusselt-number data and algebraic
curve fits used for the determination of the turbulent Prandtl number.
fully developed pipe flow, values of Prturb in excess of one are not
uncommon. It is believed that until further studies of the nature
of turbulence which occurs just after laminar breakdown have
been carried out, the values displayed in Fig. 2 should be consid-
ered as reasonable.

It is worthy of note that the Prturb values exhibited in Fig. 2 were
found to be applicable for both of the two investigated thermal
boundary conditions, UHF and UWT. This insensitivity reinforces
a similar independence of the turbulent Prandtl number on the
thermal boundary conditions was noted by Churchill [30].

2.5. Numerical implementation

The first step in the implementation is the discretization of the
solution domain. The solution domain was chosen to extend from
the pipe inlet to a location 200 diameters downstream. The selection
of this pipe length was made to ensure that fully developed condi-
tions would be achieved. For the discretization, extreme care was ta-
ken to guarantee high accuracy of the solution in the neighborhood
of the wall. In particular, the deployment of the elements was made
so that the wall-adjacent element was displaced by a value y+ < 1.75
at all axial locations and for all Reynolds numbers, so that numerous
elements spanned the laminar sublayer which is widely regarded as
being defined by 0 < y+ < 5. A mesh-independent study was per-
formed which resulted in a mesh containing approximately
1,100,000 elements, with 50 elements spanning the cross section.

Boundary conditions at the inlet of the pipe require special con-
sideration because of the uniqueness of some of the quantities that
require specification. The value of the turbulence intensity Tu is
sufficient to specify j, x, and P. For the studies performed here,
the inlet turbulence intensity was selected as 5%, which is typical
for many pipe flows. Furthermore, although the inlet intermittency
c is set equal to 1 as a default value, it immediately drops to its nat-
ural value as dictated by the flow. The inlet axial velocity profile is
uniform and is assigned a value which, in effect, specifies the Rey-
nolds number of the flow. The other velocity components at the in-
let are zero. Finally, for all cases, the dimensionless inlet
temperature was assigned a value of 0.

At the downstream end of the solution domain, the streamwise
second derivatives of all the dependent variables are zero, except
for the pressure, for which a specified, area-averaged value is pre-
scribed. At all bounding walls, the no-slip and impermeability con-
ditions are enforced for all the velocity components. Also zero at
the wall is the turbulence kinetic energy and the specific dissipa-
tion rate as well as the normal derivatives of both c and P. Two
independent thermal conditions were employed at the walls. One
condition was a dimensionless uniform heat flux (UHF), and the
other was a dimensionless wall temperature (UWT). For the UHF
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case, a dimensionless wall heat flux of 1 was applied, while for the
UWT situation, a dimensionless wall temperature of 1 was
employed.

The calculations were carried out using CFX 11.0, a commercial
finite-volume-based CFD program. A false-transient, time-stepping
approach is employed to enable convergence to the steady-state
solution [31]. While the fully implicit, backward-Euler, time-step-
ping algorithm exhibits first-order accuracy in time, its use does
not affect the accuracy of the final, converged solution.

Coupling of the velocity–pressure equations was achieved on a
non-staggered, collocated grid using the techniques developed by
Rhie and Chow [32] and Majumdar [33]. The inclusion of pres-
sure-smoothing terms in the mass conservation equation sup-
presses oscillations which can occur when both the velocity and
pressure are evaluated at coincident locations.

The advection terms in the momentum and energy equations
were evaluated by using the upwind values of the momentum flux,
supplemented with an advection-correction term. The correction
term reduces the occurrence of numerical diffusion and is of sec-
ond-order accuracy. Details of the advection treatment can be
found in [34].

3. Results and discussion

3.1. Fully developed heat transfer results

The fully developed heat transfer results will be presented in
terms of the fully developed Nusselt number whose definition
was provided in Eq. (14). In the presentation of the results, Nufd

is plotted as a function of the Reynolds number Re, which is

Re ¼ UD
m

ð15Þ

The results will be shown in separate figures for the two boundary
conditions, UHF and UWT. Fig. 3 conveys the UHF results predicted
by the present model which are for Pr = 0.70. In addition to the pres-
ent predictions, the figure contains experimental data for air flow
from the same independent investigations that were already cited
in connection with Fig. 1 [25–29]. The data correspond specifically
to the fully developed state, in contrast to the mean Nusselt num-
bers which were used as the basis of previously existing algebraic
representations.

The results conveyed in the figure cover the range of Reynolds
numbers from 1100 to 40,000. It is relevant to note that all of
Fig. 3. Comparison of presently predicted fully developed Nu numbers for the
uniform heat flux case with experimental data.
the present predictions were based on the same transition model,
even those for the pure laminar and pure turbulent regimes.

Next, the present predictions will be compared with the most
popular of the algebraic predictions. The comparison is presented
in Fig. 4 for Reynolds numbers ranging from 1100 to 40,000. The
figure is subdivided into two parts, with the main part of the figure
devoted to the range of Reynolds numbers from 1100 to 10,000 and
the inset containing results for the range 10,000 to 40,000.

Focus is first directed to the main part of the figure. An overall
view of the figure suggests that the correlations of [2,5] are not of
practical use. The Gnielinski equation [3] is to be regarded as being
valid for Reynolds numbers above 3100, while it appears that it
should not be used for Reynolds numbers below that value. On
the other hand, the Churchill correlation [4] provides a good bridge
between the Reynolds numbers of 2300 and 3100. However, it ap-
pears that for Reynolds numbers above 3100, the Churchill correla-
tion would not give accurate predictions. It is believed that the
present predictions are valid over the entire range of Reynolds
numbers of the figure.

The inset of Fig. 4 examines the low and intermediate turbulent
Reynolds number range. It can be seen from the figure that the
present predictions reinforce the Gnielinski equation [3]. The Pet-
ukhov–Popov correlation [6] is in somewhat lesser agreement with
the present predictions, while the Churchill interpolation formula
[4] deviates from the others. Since, as demonstrated in Fig. 3, the
present predictions are an excellent representation of multiple,
independently performed experiments, it appears to be a fair stan-
dard for the comparison with the main algebraic models.

The next issue to be considered is the difference in the fully
developed Nusselt numbers for the basic boundary conditions of
uniform heat flux and uniform wall temperature. That comparison
is conveyed in Fig. 5 for Reynolds numbers up to 10,000. It can be
seen from the figure that the deviations between the respective
Nusselt number values are greatest in the laminar flow regime
and diminish as the Reynolds number increases throughout
the transition and low-Reynolds-number turbulent regimes. The
laminar-flow Nusselt numbers of 3.66 and 4.36 correspond to a
17% deviation. For increasing Reynolds numbers, the deviation
disappears at a Reynolds number of approximately 8000. Further
calculations up to Re = 40,000 confirm the virtually perfect agree-
ment between the Nusselt numbers for the two boundary
conditions.

The equations which describe the present Nusselt number re-
sults for the UHF and UWT boundary conditions for the Reynolds
number range between 2300 and 3100 are, respectively,
Fig. 4. Comparison of present predictions for fully developed Nusselt numbers for
the uniform heat flux case with algebraic predictions from the literature.



Fig. 5. Comparison of fully developed Nusselt numbers for the uniform heat flux
(UHF) and uniform wall temperature (UWT) boundary conditions.

Fig. 7. Comparison of local Nusselt numbers for the UHF and UWT cases.
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For Re > 3100, it is suggested that the Gnielinski formula [3] be used
for both boundary conditions.

3.2. Local heat transfer results

Attention will now be turned to the local Nusselt number and
its variation in the streamwise direction. Results corresponding
to the UHF boundary condition are presented in Fig. 6. The figure
contains a succession of curves which are parameterized by the
Reynolds number over the range 1670 to 40,000. The results are
extended over the x/D range from 0 to 200. As can be seen from
the figure, it is clear that a number of fluid flow phenomena are re-
flected in the shapes of the curves. In all cases, starting at the inlet,
the local Nusselt number decreases sharply until a minimum is
achieved for cases where Re > 2300. The minimum can be identi-
fied with the breakdown of laminar flow. The rate of descent of
the Nusselt number is a strong function of the Reynolds number.
In particular, at the lower Re > 2300, the decrease is gradual and
a plateau-like shape is achieved. With increasing Reynolds num-
ber, the descent becomes much steeper and the plateau vanishes.
Thereafter, the Nusselt number increases and eventually reaches
a constant value which can be identified as the fully developed
state.

The penetration of the laminar region into the pipe is largest at
the lower Reynolds numbers and shrinks as the Reynolds number
increases. Furthermore, the attainment of fully developed heat
Fig. 6. Axial distribution of the local Nusselt number for the UHF case.
transfer requires a greater length at the lower Re > 2300. This
length also diminishes with increasing Reynolds number.

The curve for Re = 1670 is illustrative of the Nusselt number
development for all laminar flow Reynolds numbers. In those
cases, it is clear that the initial descent of the Nusselt number is
slower than those for the Re > 2300 cases. Not unexpectedly, the
local Nusselt numbers for the laminar cases merge monotonically
with those for the fully developed state.

Further observation of Fig. 6 enables the identification of the
point of laminar breakdown. If breakdown is associated with the
minimum value of the Nusselt number, it is seen that for the cases
covered in the figure, breakdown ranges from approximately 70
diameters to 4 diameters as the Reynolds number ranges from
2580 to 40,000. Although it is clear that laminar flow persists only
for short distances into pipes when the Reynolds number is high, it
is noteworthy that there is such a laminar region. This finding rein-
forces the original observations of Osborne Reynolds in 1883 [35].
In those experiments, performed as a flow visualization by means
of a dye stream in water, Reynolds found that the onset of turbu-
lence in a pipe always occurred downstream of the inlet. In the re-
gion between the inlet and the onset of turbulence, laminar flow
existed.

The final presentation will continue the focus on local Nusselt
numbers but will encompass both of the thermal boundary condi-
tions, UHF and UWT. Fig. 7 conveys a comparison of the axially
developing local Nusselt numbers for these cases and for a selected
set of Reynolds numbers. It can be seen from the figure that in the
developing portion of the Nusselt number distribution, the UHF
values always exceed those for UWT. This behavior can be attrib-
uted to the laminar nature of the initial portion of the development
region. In the region of thermally developed conditions, there is a
distinct difference between the results for the two boundary con-
ditions when the Reynolds number is relatively low. Again, this
finding is consistent with the laminar relationship between the
two types of boundary conditions. With increasing Reynolds num-
ber, however, the fully developed Nusselt numbers tend to merge
to a common value.

4. Concluding remarks

This investigation has had several foci, all of which are related
to the quantitative prediction of heat transfer in all the possible re-
gimes that occur when fluid flows in a straight pipe. A model for
the transition of the flow from laminar-to-intermittent-to-turbu-
lent has been adopted for this purpose. This model is applicable
for pure laminar flow, intermittent flow, and for fully turbulent
flow. In particular, it can be used to predict heat transfer coeffi-



J.P. Abraham et al. / International Journal of Heat and Mass Transfer 52 (2009) 557–563 563
cients either in the development region or the fully developed re-
gion for each of these flow regimes. In addition to the well-known
fully developed regimes for laminar and turbulent flow, the pres-
ent work has identified a third fully developed regime which
may be characterized as fully developed intermittent.

For the fully developed regimes, attention has been focused not
only on the present predictions, but on the available algebraic for-
mulae which are purported to provide information about fully
developed heat transfer in the so-called transition regime which
is commonly assumed to extend between Re = 2300 and
Re = 10,000. In addition, definitive experimental data have been
identified and are used to test the present predictions and those
of the algebraic formulae. It was found that both the Gnielinski
[3] formula and the present predictions are supported by the
experimental data in the range Re > 4800. The evaluation of the
Gnielinski formula for lower Reynolds numbers leads to the con-
clusion that there is a range of Reynolds numbers between 2300
and 3100 for which its accuracy is questionable. On the other hand,
both the present results and the algebraic formula due to Churchill
[4] appear to adequately bridge the aforementioned gap and
smoothly mate with the laminar results. On the basis of the pre-
sented results, it is believed that the present predictions are valid
for all Reynolds numbers.

The variation of the local heat transfer coefficients along
the length of the pipe has been determined as well as the fully
developed values. In the near-inlet region, the flow is laminar.
Subsequent to the breakdown of laminar flow, a region of intermit-
tency is present. This intermittency may either evolve into a fully
turbulent flow or may, alternatively, become a fully developed
intermittent flow. Quantitative information in the form of local
Nusselt numbers is presented for all of these cases.

The two basic boundary conditions, uniform heat flux and uni-
form wall temperature, give rise to local heat transfer coefficients
in the development region that differ by about 25%. However, for
fully developed turbulent flow, the heat transfer coefficients for
the two cases are virtually coincident. If, on the other hand, the
fully developed regime is intermittent, the two boundary condi-
tions give rise to values of the heat transfer coefficient which differ
by approximately 25%.
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